
doi: 10.1098/rsta.1998.0149
, 57-74356 1998 Phil. Trans. R. Soc. Lond. A

 
V. Dobrosavljevi� and G. Kotliar
 

insulator transitions−field studies of metal−Dynamical mean
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1998 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;356/1735/57&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/356/1735/57.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Dynamical mean-field studies of
metal–insulator transitions
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We discuss the successes of the dynamical mean-field (DMF) approach to metal–
insulator transitions in both the clean and the disordered limit. In the latter case,
standard DMF equations are generalized in order to incorporate both the physics of
strong correlation and Anderson localization effects. The results give new insights
into the puzzling features of doped semiconductors.
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1. Introduction

How a substance evolves from a metallic to a non-metallic state is one of the most
fundamental and richest problems in condensed matter physics.

In general, there are several mechanisms at play. Electron–electron interactions can
drive a metal to insulator transition in a pure substance (Mott 1990). This transition
is named after Sir Nevill Mott who laid down the foundations for the physical under-
standing of this phenomenon. Another route was discovered by Anderson (1958) who
realized that sufficiently strong disorder can drive a metal–insulator transition even
in systems of non-interacting electrons. The theoretical description of the situation
when both effects are present is a central unsolved problem (for recent reviews see
Lee & Ramakrishnan 1983 and Belitz & Kirkpatrick 1995).

Early treatments (Abrahams et al. 1979; Wegner 1976; Schäffer & Wegner 1980;
Finkelshtein 1983, 1984) used direct analogies from the theory of magnetism and the
scaling approach to critical phenomena. The technical apparatus of the approach was
a field theoretical nonlinear sigma model and an expansion near two dimensions. The
physical content of such theories was expressed concisely in terms of an extension
(Castellani et al. 1987) of the Fermi liquid approach to disordered systems. These
ideas were very successful in the description of the transport and thermodynamic
properties of weakly disordered metals. The approach, however, encounter several
difficulties in accounting for experimental observations in many systems. The origin
of these difficulties can be traced to (1) strong interaction effects, and (2) strong
statistical fluctuations. One important manifestation of this effect was the formation
of local magnetic moments, objects which can not be understood from a weak cor-
relation perspective. This aspect of the problem and its theoretical treatment were
addressed in Paalanen et al. (1988) and Milovanović et al. (1989).
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58 V. Dobrosavljević and G. Kotliar

In the last few years, a new dynamical mean-field approach to the strong corre-
lation problem has been developed (Metzner & Vollhardt 1989; Georges & Kotliar
1992). It has explained many puzzling features of clean three-dimensional transition
metal oxides (for a review see Georges et al. 1996). Very recently, it was extended
(Dobrosavljević & Kotliar 1997) to incorporate the interplay of Anderson localization
and correlations effects.

The mean-field method is largely complementary to the scaling approach. While
the latter concentrates on the long wavelength modes which presumably govern the
immediate vicinity of the transition, the former focuses on the local charge and spin
dynamics of the electrons. The latter is based on an expansion around the lower
critical dimension, the former being formally valid in large dimensions. It is our view
that a good mean-field understanding of the metal to insulator transition problem is
a necessary first step towards a comprehensive theory.

In this talk we will not focus on the technical aspects of the method which are
thoroughly reviewed elsewhere. Instead we will attempt to give a simple descrip-
tion of the physical content of the approach, and of the results obtained by this
method. Section 2 introduces the essential idea of the mean-field method for a gen-
eral periodic solid. It is our hope that its generality and local character will be of
interested to the chemistry community which has stressed the importance of local
bonding and correlations through the years. Section 5 discusses the extension to the
disordered case. We stress the importance of statistical fluctuations and how they
are captured by the mean-field method. In §3, we discuss the physics of the den-
sity driven Mott transition and explain why the mean-field approach works so well
for three-dimensional compounds, stressing the role of orbital degeneracy. We then
move to the physics of disordered interacting systems which was the focus of many
years of Mott’s research. Section 4 discusses our views on the puzzle posed by the
differences between uncompensated semiconductors and disordered alloys. In §§ 5–7,
we elaborate on the physical content of the mean-field approach and argue it cap-
tures some essential elements needed to resolve this puzzle. We conclude in §8 with
a comparison to other approaches and outline some directions for further work.

2. Dynamical mean-field theory (DMF) theory—the clean limit

To motivate the dynamical mean-field (DMF) approach, it is useful to draw some
analogies with a well-established approach to the electronic structure problem, the
density functional theory (DFT). The basic physical quantity in DFT is the den-
sity ρ(r), and the free energy of a system is written as a functional of the density
FDFT[ρ(r)]. Its minimum gives the physical density of the system in question. In
practice, the form of the functional FDFT is unknown and various approximations
such as the LDA (local density approximation) are used instead of the exact density
functional.

The dynamical mean-field approach is very similar in spirit, except that it adopts
the local spectral function A(ω, r) ≡ −(1/π) ImG(r, r;ω + iδ) as the basic quantity.
One then writes the free energy as a functional of this quantity, and its minimization
leads to the dynamical mean-field equations which give the one particle spectral func-
tion for the system of interest. One can motivate the extension from the density to
the spectral function (which can be thought of loosely as a kind of energy-resolved
density) in the context of strongly correlated electron systems, by thinking about
their photoemission (and inverse photoemission) spectra which demonstrate the exis-
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Dynamical mean-field approach 59

tence of bands which have the character of atomic configurations (Hubbard bands),
in addition to the ordinary quasi-particle bands which are analogous to those of
the non-interacting system. One can incorporate quasi-particle bands and Hubbard
bands naturally in a single theoretical framework by resolving in energy, the local
density, i.e. the local density is the integral of the local spectral function over fre-
quency. By resolving in energy the localized and itinerant component of the electron,
DMF approach treats coherent (quasi-particle like) and incoherent (Hubbard bands
like) excitations on the same footing. It is a unified framework for the description of
localized and itinerant electrons.

To illustrate the generality of the method let us start from a Hamiltonian con-
taining several orbitals per unit cell. We use a compact notation where the index
α = (m,σ) combines the orbital m and the spin σ.

Hlattice = −
∑
〈ij〉

c+
iαtiα,jβcjβ +

∑
i

(Eαβ − µδαβ)c+
iαciβ +

∑
i

Γαβγδc+
iαciβc

+
iγciδ. (2.1)

We now focus on a single unit cell, and integrate out all degrees of freedom except
for those which reside in the selected unit cell. These are described by operators cα
and no longer carry a site index. The dynamics of the resulting problem is described
by an impurity model which describes an impurity (cα) coupled to a bath of fermions
(abµ)

Himp =
∑
αβ

(Eαβ − µδαβ)c+
α cβ +

∑
i

Γαβγδc+
α cβc

+
γ cδ

+
∑
bµ

εbµa
+
bµabµ +

∑
k

(Vbµ,αa
+
bµcα + h.c.). (2.2)

From the impurity model we can obtain all the local correlation functions, since by
construction the local lattice Green’s functions are identical to the impurity Green’s
function Ĝ = (Gα,β). We use a matrix notation so that the local Green’s function is
given by

Gα,β(τ − τ ′) = −〈Tτcα(τ)c+
β (τ ′)〉 (2.3)

This should be viewed as a functional of the parameters εbµ and Vbµ,α. To deter-
mine these parameters we construct the ‘Weiss field’, which describes the effect of
the rest of the electrons on the selected cell,

Ĝ−1
0 (iωn) = (iωn + µ)Î − Ê −

(∑
bµ

Vbµ,αVbµ,β/(iωn − εbµ)
)
,

and the self-energy of the impurity, Σ̂ (iωn) = Ĝ−1
0 (iωn)− Ĝ−1(iωn), viewed as a func-

tional of εbµ and Vbµ. These parameters are determined by requiring that the bath
and the local degrees of freedom describe the electrons in the original lattice prob-
lem. Namely, we can construct the local Green’s function from the lattice Green’s
function obtained by adding a k independent self-energy to the non-interacting lat-
tice Green’s function (obtained from (2.1) by setting the interaction terms to zero)
or from the impurity model.

Ĝ(iωn) =
∑
k

((iωn + µ)Î − t̂(k)− Σ̂ (iωn)− Ê)−1. (2.4)

The reader will notice many common features between DMFT and the Bragg
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Williams theory of magnetism. However, in fermionic problems a new feature
emerges—the cavity field acquires non-trivial time dependence, allowing a non-
perturbative treatment of local dynamics, which proves to be of crucial importance
for strongly correlated electrons. In particular, the approach incorporates incoherent
(inelastic) processes even on this mean-field level, as opposed to most other treat-
ments. As a result, the formulation can be used even in the study of non-Fermi liquid
metallic phases; for example, in extended Hubbard models (Si & Kotliar 1993).

3. Dynamical mean-field theory of the density driven Mott transition
in pure systems

The Mott transition in transition metal oxides has received renewed theoretical
and experimental attention. On the experimental side, new compounds have been
synthesized (Tokura et al. 1993; Okimoto et al. 1995) and known compounds such as
V2O3 and NiSe1−xSx have been studied. On the theoretical side, new insights have
been obtained from studying the one-band Hubbard model in the limit of large lattice
coordination. In this limit the pressure and temperature driven Mott transition, as
well as the density driven transition, can be thoroughly analysed.

Several quantitative comparisons between the physics of three-dimensional tran-
sition metal oxides and the one-band Hubbard model have already been performed
(Kotliar & Kajueter 1996; Rozenberg et al. 1995). For example, the doping depen-
dence of the electronic specific heat, the resistivity and the Hall coefficient in
LaxSr1−xTiO3 can be explained by the one-band Hubbard model without adjustable
parameters after the values of U and D have been extracted from photoemission
data (Kajueter et al. 1996). Similarly, the single-band Hubbard model can describe
the temperature dependence of both, the optical and the DC-conductivity in V2O3
(Rozenberg et al. 1995).

The Mott transition with integer occupation has been the subject of extensive
reviews (Georges et al. 1996). Here we focus on some qualitative aspects of the
physics of the density driven Mott transition, the emphasis will be on the question:
why does the mean-field theory work so well for three-dimensional transition metal
oxides?

We start with a brief discussion of the qualitative content of the mean-field theory
of the doped Mott insulator. At low temperatures, the mean-field theory describes
a Fermi liquid with a an energy scale (renormalized Fermi energy εF∗) which is pro-
portional to the doping (i.e. deviation from half filling) δ. In infinite dimensions, the
renormalized Fermi energy is proportional to the quasi-particle residue Z which also
vanishes linearly in doping, i.e. εF∗ = ZD. In this regime, the linear term of the
specific heat is inversely proportional to δ and the Hall coefficient is unrenormalized
from its band structure value. The Fermi liquid description is valid up to a temper-
ature scale T0 that surprisingly scales as δ3/2, and is therefore quite small very close
to the Mott transition (Kajueter et al. 1996).

The qualitative success of the mean-field approach when applied to three-
dimensional transition metal oxides is due to the orbital degeneracy of three-
dimensional transition metal oxides. Orbital degeneracy causes a close competition
between ferromagnetic and antiferromagnetic tendencies. The net spin–spin interac-
tion is a sum of antiferromagnetic and ferromagnetic terms which tend to largely
cancel. An illuminating example that can be studied exactly is a two site system
was described by Kajueter & Kotliar (1997) mimicking a Ti ion in LaTiO3. The
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basic scale of the problem is a bandwidth which is of order of 1 eV, but the splitting
between different spin configurations turns out to be much smaller (between 10−3

and 10−4 eV).
If we insist on using a one-band model which ignores the orbital degeneracy, to

reproduce the gross features of transition metal oxides, one must introduce in the
model terms that suppress the tendency towards magnetic order. In infinite dimen-
sion, this can be accomplished by choosing lattices with longer range hopping matrix
elements which induce magnetic frustration or by adding and additional ferromagnet-
ic interactions to the Hamiltonian to compensate for the antiferromagnetic exchange
which is inherent to the Hubbard model on the hyper-cubic lattice. A Hamiltonian
of the form

H = −
∑
ij,σ

tijc
+
iσcjσ + U

∑
i

ni↑ni↓ +
J

d

∑
〈ij〉
Si · Sj , (3.1)

with an additional ferromagnetic interaction J increasing as a function of x, can serve
as a crude caricature of the La1−xYxTiO3 system. This compound is ferromagnetic
for x near 1 but becomes antiferromangetic at small values of x (Okimoto et al.
1995).

While this approach is certainly too crude to describe details of the magnetic
ordering, it expresses the fact that the localization tendencies in this system are not
caused by, and are largely independent of, the magnetic ordering (which can be either
ferromagnetic or antiferromagnetic). In the limit of large dimensions, the J term
does not affect the one particle properties, so the calculations of the effective mass
performed in the absence of this term apply to this model as well. The Hamiltonian
(3.1) was used by Georges & Laloux (1996) to model the Wilson ratio of liquid
He3, and by Obermeier et al. (1996) to model the magnetic response of cuprate
superconductors.

To summarize, the mean-field theory works very well in systems where the charge
and spin fluctuations are reasonably local. This is the situation in three-dimensional
transition metal oxides (as a result of orbital degeneracy) and in the disordered
systems described in the next section.

While the qualitative success of dynamical mean-field theory is easy to under-
stand, the surprising quantitative agreement of this approach as applied to orbital
degenerate systems was clarified only recently (Kotliar & Kajueter 1996; Kajueter
& Kotliar 1997). It was shown that: the quantitative value of physical quantities
such as the effective mass, and the optical gap, near the Mott insulating state with
one electron per site, which had previously been compared with experiments depend
weakly on the band degeneracy (the differences are of less than 10%). On the other
hand, the high energy behaviour of the spectral functions have a sizable dependence
on the number of orbitals per site.

4. The metal to insulator transition in disordered systems: some
outstanding puzzles

The presence of disorder adds a new dimension to the metal to insulator transition
problem. The continuous nature of the metal to insulator transition was first demon-
strated in this class of systems (for a general review of metal–insulator transitions
see Mott (1990)). As a result of a series of intensive experimental studies, a basic
picture of the behaviour of physical quantities near the transition has emerged. In
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this section we describe briefly some aspects of the experimental picture which we
regard as well established, but which still remain a challenge for the microscopic
theory. For more comprehensive reviews of the experimental situation in this field
see Paalanen & Bhatt (1991), Sarachik (1995) and von Löhneyesen (this volume).

It is well established that the T = 0 conductivity vanishes as the transition (i.e.
critical dopant concentration in doped semiconductors) is approached from the metal-
lic side. We leave the immediate vicinity of the metal to insulator transition out of
this analysis because the extrapolation to zero temperature is problematic (for a
good discussion of this point see von Löhneysen (this volume)). In the region where
this extrapolation is unambiguous, the conductivity vanishes in a power law fashion
(σ ≈ (n− nc)µ). In uncompensated materials (one electron or hole per dopant ion),
the conductivity exponent takes an anomalously small value µ ≈ 1

2 (Paalanen et al.
1980). Such a small value of the conductivity exponent proved to be notoriously dif-
ficult to explain by any known theory. On the other hand, well-compensated doped
semiconductors (only partial filling of the impurity band) behave very differently;
their conductivity vanishes with an exponent µ ≈ 1. Amorphous alloys behave the
same way. In the presence of a strong magnetic field, the conductivity vanishes with
an exponent µ ≈ 1, in both compensated an uncompensated semiconductors (Dai
et al. 1991, 1992). The presence of spin-orbit (SO) coupling (Dai et al. 1991, 1992)
does not seem to be a determining factor for the behaviour of the conductivity. Both
Si:B (where SO coupling is strong) and Si:P (where SO coupling is weak) behave
qualitatively in the same way. Uncompensated doped semiconductors also display
an anomalous temperature dependence. In the metallic phase for concentrations not
too close to the transition, the conductivity increases as the temperature is lowered.
This behaviour can be reversed by applying strong magnetic fields, resulting in a
decreasing conductivity at low T .

In our view these anomalies occur over a wide range of concentrations and are not
restricted to a tiny critical region in the vicinity of the transition. For example, the
anomalously small value of the conductivity exponent µ ≈ 1

2 describes the data all the
way to n ≈ 4nc! It is then natural to conclude that the observed behaviour should not
be identified with an asymptotic critical behaviour associated with a narrow critical
region. Rather, it should be described by an appropriate equation of state, that is
expected to follow from a relevant mean-field description of the problem. We also
emphasize that the anomalies are associated with uncompensated systems, where we
expect the effects of electronic correlation to be the strongest. It is thus natural to
approach the problem from a DMF perspective. In this picture, many of the above
features, but in particular the compensation (filling) dependence, follow naturally.

In contrast to the transport properties, the thermodynamic quantities χ and γ vary
smoothly (Paalanen et al. 1988) as a function of concentration across the transition,
and seem to diverge at low temperatures both on the insulating and on the metallic
side of the transition. The NMR experiments (Paalanen et al. 1985; Alloul & Dellouve
1987) portray a strongly inhomogeneous picture. There is a wide distributions of
Knight shifts on the Phosphorus sites. As the transition is approached, a large number
of sites acquire Knight shifts that are larger than the measurable range indicating
the formation of local moments. The Knight shift on Si is a smoother function of
concentration (Stoddart et al. 1992), suggesting that the metal–insulator transition
takes place in the phosphorus impurity band.

Underlying this experimental picture is a broad distribution of energy scales which
makes the metal–insulator transition in disordered systems very different than in the
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clean case. In addition, this behaviour reflects unusually developed spatial fluctu-
ations of the electronic system. While such behaviour does not normally occur in
ordinary metals, it is a natural consequence of the incipient localization of the elec-
tronic states—which by definition cannot happen in a uniform fashion.

5. Statistical DMF theory

We have argued that in presence of disorder, the situation is qualitatively more
complex than in the clean limit. Clearly, it is necessary to extend the DMF ideas
in order to capture the crucial effects of disorder—the spatial fluctuations of the
order parameter. In the following we present a simple pedagogical derivation of the
statistical DMF theory, and discuss some of its main features.

We follow an approach very similar to the Thouless–Anderson–Palmer (1977) for-
mulation of the mean-field theory of spin glasses. Specifically, we treat the correlation
aspects of the problem in a dynamical mean-field theory fashion, but allow spatial
variations of the order parameter in order to allow for Anderson localization effects.
The theory is then exact in the non-interacting limit, and reduces to the standard
dynamical mean-field theory in absence of disorder. The approach can be applied
to any lattice model of interacting fermions. For simplicity, we consider a simple
single-band Hubbard model with random site energies given by the Hamiltonian

H =
∑
ij

∑
σ

(−tij + εiδij)c
†
i,σcj,σ + U

∑
i

c†i,↑ci,↑c
†
i,↓ci,↓. (5.1)

Following the general spirit of the DMF theory, we focus on a particular site i of
the lattice, and integrate all the other sites. This procedure is formally exact, but the
resulting local effective action takes an arbitrarily complicated form (Dobrosavljević
& Kotliar 1994), containing n-point vertices of all orders. However, within the DMF
approach, one retains only the contributions quadratic in fermion fields, and the local
effective action assumes the form

Seff(i) =
∑
σ

∫ β

0
dτ
∫ β

0
dτ ′c†i,σ(τ)(δ(τ − τ ′)(∂τ + εi − µ)

+∆i,σ(τ, τ ′))ci,σ(τ ′) + U

∫ β

0
dτ ni,↑(τ)ni,↓(τ). (5.2)

Here, we have used functional integration over Grassmann fields ci,σ(τ) that represent
electrons of spin σ on site i, and ni,σ(τ) = c†i,σ(τ)ci,σ(τ). The ‘hybridization function’
∆i(τ, τ ′) is given by

∆i(ωn) =
z∑

j,k=1

tijtikG
(i)
jk (ωn). (5.3)

The sums over j and k runs over the z neighbours of the site i, and

G
(i)
jk (ωn) = 〈c†j(ωn)ck(ωn)〉(i) (5.4)

are the lattice Green’s functions evaluated with the site i removed. In general, these
objects can be expressed through ordinary lattice Green’s function as

G
(0)
jk = Gjk −GjiGjk/Gii. (5.5)

We emphasize that the above construction is carried out for a fixed realization of
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disorder defined by a given set of random site energies {εi}. The DMF truncation,
which keeps only the quadratic contributions to the effective action, is exact for:
(i) infinite coordination (z →∞) (Dobrosavljević & Kotliar 1993, 1994); or (ii) non-
interacting electrons for arbitrary coordination (Anderson 1958).

Note that in the case (i), the sum in the definition of ∆i(ωn) runs over infinitely
many neighbouring sites, so that the hybridization function is replaced by its average
value. As a result, all the spatial fluctuations in the ‘cavity’ representing the envi-
ronment of a given site are suppressed, prohibiting Anderson localization effects. For
non-interacting electrons, the resulting theory reduces to the well-known ‘coherent
potential approximation’ (Elliott et al. 1974).

Since one of the main goals of the statistical DMF theory is to incorporate Ander-
son localization effects, we concentrate on finite coordination lattices. In this case, ∆i

can be considered to be a functional of the lattice Green’s functions Gjk, evaluated
for fixed disorder, i.e.

∆i = ∆i[Gjk]. (5.6)
At strong disorder, ∆i will exhibit pronounced fluctuations from site to site, reflecting
a distribution of local environments ‘seen’ by the electrons.

Finally, in order to obtain a closed set of DMF self-consistency conditions, we need
to specify a procedure that relates the lattice Green’s functions Gjk to the solution of
the local dynamical problem, as defined by the local effective action Seff(i). We first
note that the local action Seff(i) is identical to that describing an Anderson impurity
(AI) model (Anderson 1961; Hewson 1993) embedded in a sea of conduction electrons
described by a hybridization function ∆i(ωn). The solution of this AI model then
uniquely defines the corresponding self-energy Σi, which is given by

Σi(ωn) = iωn + µ− εi −∆i(ωn)− (Gloc
ii (ωn))−1, (5.7)

where the local Green’s function

Gloc
ii (ωn) = 〈c†i (ωn)ci(ωn)〉loc (5.8)

is evaluated with respect to the local effective action Seff(i).
Next, we follow an ‘exact eigenstate’ strategy, and define the ‘bare’ lattice Green’s

functions G0
ij as the exact lattice Green’s functions evaluated for the same realization

of disorder {εi}, in absence of interactions. The ‘full’, i.e. interaction-renormalized,
lattice Green’s functions are within statistical DMF theory then defined by

Gij = G0
ij [εi → εi + Σi(ωn)], (5.9)

closing the set of DMF self-consistency conditions.
We emphasize that a similar relationship relates the exact interaction-renormalized

lattice Green’s functions to their non-interacting counterparts. However, in the exact
formulation, the self-energies describing the interaction renormalizations are in gen-
eral non-local in space, as well as in frequency. Having this in mind, we can describe
the statistical DMF theory as a requirement for these interaction dependent self-
energies to assume a strictly local character.

For an arbitrary lattice, an iterative procedure for solving the above set of statis-
tical DMF equations could be obtained by: (i) making an initial guess for the form
of ∆i(ωn); (ii) solving the corresponding AI models on every lattice site; (iii) using
the resulting Σi to calculate the full lattice Green’s functions; (iv) calculating the
new values of ∆i(ωn) and going back to step (ii).
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This procedure can be carried out for an arbitrary lattice in any dimension, but
the procedure can be fairly time consuming due to the need to compute all the
off-diagonal components of the lattice Green’s functions Gij . However, similar com-
putations have already been carried out to study the interplay of correlations and
disorder in a Hartree–Fock (HF) approach (Yang & MacDonald 1993). Interestingly,
such a lattice HF treatment for a fixed disorder realization can be obtained as a
further simplification of the statistical DMF theory, if the local Anderson impuri-
ty models are themselves solved at the same level. Of course, an exact solution of
the statistical DMF equations goes well beyond such a HF treatment, since it can
describe inelastic processes, which are expected to be of particular importance at
finite temperature and in metallic non-Fermi liquid phases.

In practical terms, it is important to identify specific models where the solution of
the statistical DMF equations can be simplified. The situation is particularly simple
in the case of a Bethe lattice (Cayley tree). Because the absence of loops on such
lattices, only local Green’s functions G(i)

jj (ωn) appear in the expression for ∆i(ωn).
Furthermore, in this case the objects

G
(i)
jj (ωn)

can be computed from a local action of the form identical as in equation (5.2), except
that in the expression for ∆j(ωn), the sum now runs over z−1 neighbours, excluding
the site i. We thus conclude that the objects G(i)

jj (ωn) are related by a stochastic
recursion relation that involves solving Anderson impurity models with random on-
site energies εi. In the non-interacting limit, the recursion relations can be written
in close form, and reduce to the exact solution of the disordered electrons on a Bethe
lattice (Abou-Chacra et al. 1971).

6. Order parameters for the metal to insulator transition: the
disordered case

In attempting to describe any phase transition, a crucial step is to identify appro-
priate order parameters that can characterize the qualitative differences between the
different phases of the system.

Since the basic focus of the dynamical mean field approach is the one particle
Green’s function, it is useful to write down an explicit expression for the Green’s
function of a lattice system with a one-body Hamiltonian Hij and a general two-
body interaction term in terms of a self-energy Σij(iω),

[G−1(ωn)]ij = [δij iωn −Hij − Σij(ωn)]. (6.1)

Here, we have used a matrix notation, for a fixed realization of disorder, so that the
self-energy Σij(ω) describes the interaction induced renormalizations of the Green’s
function. A quasi-particle picture emerges under a fairly general assumptions of reg-
ularity of the interaction self-energy at low frequencies. In this case,

Σij(ω) ≈ Σij(0) + ([Z−1]ij − 1)ωn +O(ω2
n) (6.2)

and the Green’s function at low frequencies assumes a very transparent form

G(ωn) =
√
ZGQP(ωn)

√
Z, (6.3)

with the quasi-particle Green’s function defined as

[GQP]−1 = ωnI −
√
Z(H + Σ (0))

√
Z. (6.4)
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Introducing the low energy eigenvalues of the quasi-particle Hamiltonian En and
their corresponding eigenvector |n〉, we can write

G(x, x′) ≈
∑
n

〈x|√Z|n〉〈n|√Z|x′〉
(ω − En)

. (6.5)

So far we have just repeated the derivation of the disordered Fermi liquid frame-
work of dirty metals (Castellani et al. 1987). In that reference those concepts were
used to interpret the field theoretical coupling constants of Finkelshtein’s nonlinear
sigma model in terms of Fermi liquid parameters. Implicit in that framework was the
assumption that the spatial fluctuations, or the sample to sample fluctuations, were
not too large. This assumption is valid for weak disorder. The main advance of the
dynamical mean-field approach is the ability to deal with strong spatial fluctuations.

The results of the next section indicate very different behaviour for typical and
average quantities, reflecting large spatial fluctuations. These differences may be the
source of the finite scale divergences that were encountered in the field theoretical
approach (Finkhelstein 1983, 1984) which, from the very begining, carries out an
average over the disorder.

We now use the previous developments to introduce the order parameters which
are relevant to the DMF theory. We begin with defining the local density of states
at zero frequency

ρi = −(1/π) ImGii(0+), (6.6)
and the corresponding local quasi-particle density of states

ρQP
i = −(1/π) ImGQP

ii (0+). (6.7)

Their ratio defines the second-order parameter

Zi = ρi/ρ
QP
i , (6.8)

which could be dubbed the local quasi-particle weight. In the DMF framework, all
the previous equations simplify because the self-energy is local (Σij(ωn) = δijΣi(ωn))
and Zi can directly be calculated from the expression

Zi =
[
1− ∂

∂ω
Re[Σi(ωn)]|ωn=0+

]−1

. (6.9)

When these parameters are mostly uniform, i.e. site independent, their aver-
ages are precisely two of the coupling constants in the field theoretical approach
of Finkelshtein. In the statistical mean-field approach, we focus instead on whole
distributions (or on typical values) of these parameters.

We now turn to the physical interpretation of the order parameters, or more pre-
cisely their statistical distribution. The low energy physics is described by two param-
eters, ρi and Zi, which are associated with the height and the width of the resonance
in the spectra of the local impurity problem. Physically, ρi can be interpreted as a the
density of states for adding or removing an electron from a specific site; Zi is related
to the energy scale (or timescale) over which the quasi-particle picture applies. On
the metallic side of the transition, the electron behaves as a local magnetic moment
up to a time scale proportional Z−1

i , but as a delocalized quasi-particle over longer
timescales. The vanishing of Zi signals the conversion of quasi-particle degrees of
freedom into local moments, which takes place at the Mott transition.

To gain further insight into the physical content of these order parameters, we
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concentrate on transport properties. The fundamental difference between a metal
and an insulator is defined by the ability of the electron to leave a given lattice
site—to delocalize. In early work, Anderson (1958) pointed out that, at least for
non-interacting electrons, this property could be examined by evaluating the lifetime
of an electron on a given site. Very generally, the inverse lifetime simply measures
the width of the the local resonance level. We thus expect

1/τi ∼ Im(Gii(0+))−1. (6.10)

Within DMF, the local Green’s function takes the form

Gii(ωn) = [iωn + µ− εi −∆i(ωn)− Σi(ωn)]−1, (6.11)

and since for Anderson impurity models (see, for example, Hewson 1993)

Im Σi(0+) = 0,

we conclude that the desired local lifetime can be directly related to the local
hybridization function as

1/τi ∼ Im ∆i(0+). (6.12)
We thus expect Im ∆i(0) to vanish whenever the system is insulating, but to remain

finite in a metallic regime. We emphasizing that the same qualitative behaviour
should be expected for the local density of states (LDOS) ρi as can be readily seen
from equation (5.3). We can thus use the LDOS as an order parameter that discrim-
inates a metal from an insulator. In a random system, ρi will fluctuate from site to
site, and we need a whole distribution function to fully characterize the approach to
the transition.

In particular, in the Mott insulator, there is a ‘hard’ gap of order U on every lattice
site, so even the average DOS discriminates the Mott insulator from the metal. The
situation is more complex as the Anderson insulator is approached. Here, the local
spectrum is composed of a few δ functions (discrete, bound states), separated by
gaps, but the average DOS remains finite. In contrast to the Mott insulator, in the
Anderson insulator, the sizes and positions of the local gaps fluctuate, but in both
cases a typical site has a gap at the Fermi energy. A natural-order parameter is
therefore the typical DOS, that is represented by the geometric average

ρtyp = 〈ρ〉geom = exp{〈ln ρi〉}. (6.13)

This quantity is found to vanish at the Anderson transition, in contrast to the average
DOS, which is not critical.

On the metallic side of the transition, the distribution function of a second quanti-
ty, the local quasi-particle (QP) weight, is necessary to characterized the low energy
behaviour near the transition. Important information is obtained from the typical
value of the random variable Zi, defined as

Ztyp = exp{〈lnZi〉}, (6.14)

which emerges as a natural-order parameter from previous studies of the Mott tran-
sition.

Finally, we define the averaged QP DOS by

ρQP
av = 〈ρQP

i 〉. (6.15)

This object is very important for thermodynamics, since it is directly related to
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quantities such as the specific heat coefficient γ = C/T , or the local spin susceptibility
χloc. Note that in absence of interactions, ρQP

av reduces to the usual (algebraic) average
DOS, which is not critical at a U = 0 Anderson transition, but it is strongly enhanced
in the vicinity of the Mott transition.

It is instructive to discuss the behaviour of these order parameters in the pre-
viously studied limiting cases. In the limit of large lattice coordination, the spatial
fluctuations of the bath function ∆i(ωn) are unimportant, and there is no qualitative
difference between typical and average quantities. In the Mott insulating phase of a
periodic solid, there is a gap in the density of states, while there is a finite density
of states on the metallic side of the transition. As the MIT is approached from the
metallic side, ρtyp remains finite, but Ztyp is found (Dobrosavljević & Kotliar 1993,
1994) to linearly go to zero.

Another well-studied limit is that of non-interacting electrons on the Bethe lattice,
which is known (Abou-Chacra et al. 1971; Efetov 1987; Mirlin & Fyodorov 1991) to
display an Anderson transition. The average DOS is finite both in the insulating and
in the metallic phase, and is non-critical at the transition. Similarly, by definition,
Ztyp = 1 in this non-interacting limit, so it also remains non-critical. On the other
hand, the typical density of states ρtyp is finite in the metal and zero in the Anderson
insulator. This quantity is critical, and is found to vanishes exponentially with the
distance to the transition.

The definitions of the the order parameters that we have proposed are not restricted
to the statistical DMF framework, which is simply used as a specific calculational
scheme. The same definitions can, in principle, be used in other approaches that can
calculate local unaveraged values of the local DOS ρi(ωn) or the local part of the
frequency dependent self-energy Σii(ωn) due to the interactions.

7. Results

The dynamical mean-field theory maps the insulating phase of the model onto a
collection of Anderson impurity models; each one of them is embedded in an insulat-
ing bath. An Anderson impurity in an insulator, away from particle hole symmetry,
can either have a doublet ground state when the coupling to the enviroment is weak
or a singlet ground state when the coupling to the bath exceeds a critical value. In
this strong coupling limit (Dobrosavljević & Kotliar 1992), a bound state is pulled
from the continuum formed by the bands of the insulator. From these general consid-
erations, we obtain a two-fluid picture of the insulating phase: there are sites which
have a local moment down to zero temperature while other sites quenched their spin
by exchanging it with a strongly coupled neighbour.

The number of sites in a doublet state, in the insulating phase of the system, form
‘Mott droplets’. Based on our experience on the Mott transition in clean systems,
we expect a larger density of states when the system undergoes a metal to insulator
transition into an insulating phase with a large number of doublets. This results in
at least two different regimes depending on whether the insulating phase has a high
or low concentration of sites in doublet states.

We have considered a z = 3 (Dobrosavljević & Kotliar 1997) Bethe lattice, in
the limit of infinite on-site repulsion U at T = 0 and fixed average density n in
the presence of a uniform distribution of random site energies εi of width W . To
calculate the probability distributions of ρj and Zj , we used a simulation approach,
where the probability distribution for the stochastic quantity G

(i)
j (ωn) is sampled
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from an ensemble of N sites, as originally suggested by Abou–Chacra et al. (1971).
In order to solve Anderson impurity models for given bath functions ∆j(ωn), we use
the slave boson (SB) mean-field theory (Barnes 1977; Read & Newns 1983; Coleman
1987), which is known to be qualitatively and even semiquantitatively correct at
low temperature and at low energies. In agreement with heuristic arguments, we
expect the results to be a strong function of the density n. In order to illustrate this
behaviour, we have carried out explicit calculations for both low electron density
n = 0.3, and high electron density n = 0.7 (i.e. close to half filling). We emphasize
that in the clean limit (W = 0), the behaviour is qualitatively identical for the two
values of the density, and the system remains metallic, with only the value of the
effective quasi-particle mass m∗ ∼ Z−1 being a function of n. Qualitatively different
behaviour is found as the disorder is introduced.

We first describe the evolution of the probability distribution of the local quasi-
particle weights Zi, as the disorder is increased. The sites with Zi � 1 represent
(Milovanović et al. 1989; Dobrosavljević & Kotliar 1993, 1994) disorder-induced
local magnetic moments, and as such will dominate the thermodynamic response
(see the definition of ρQP). For weak disorder we expect relatively few local moments
and the quasi-particle weight distribution is peaked at a finite value. As the disor-
der is increased, the distribution of Zi broadens. At a critical value of the disorder
W = Wnfl, the form of this distribution assumes a singular form (Bhatt & Fisher
1992; Dobrosavljević et al. 1992; Miranda et al. 1996, 1997), leading to anomalous
thermodynamic response characterized by a diverging magnetic susceptibility χ and
specific heat coefficient γ. This behaviour was found both for high and low density, in
remarkable agreement with experiments carried out on for uncompensated and com-
pensated doped semiconductors. Interestingly, a similar transition to a non-Fermi
liquid metallic phase, well before the MIT, has been found from the field-theoretical
approaches in 2 + ε dimensions (Finkelshtein 1983, 1984) (for a review of subsequent
work on this issue, see the review by Belitz & Kirkpatrick (1994)).

As the level of disorder is increased further, a metal–insulator transition is reached
at the second critical value of disorder W = Wc. At this point, the typical quasi-
particle weight Ztyp vanishes, a behaviour reminiscent of the clean Mott transition.
While this behaviour is found at both high and low density, the examination of the
second-order parameter ρi reveals striking density dependence in the vicinity of the
transition. The difference are most clearly displayed by plotting the evolution of the
distribution function P (ρi) as a function of doping.

At low filling n = 0.3, we find that the with of this distribution becomes extremely
large, spanning many decades, reflecting huge spatial fluctuations of the electronic
wave functions, as shown in figure 1. At the same time, the most probable value
ρtyp is found to dramatically decrease, vanishing linearly with the distance to the
transition. In contrast to this result, a very different behaviour is found at high
density n = 0.7.

As we can see from figure 2, in this case the distribution width again broadens,
albeit in a somewhat slower fashion, as the transition is approached. However, in this
case the most probable value ρtyp is only weakly modified with increasing disorder,
and is found to approach a finite value at the transition. Recalling that the statistics
of ρi are intimately related to transport, our results strongly suggest that kinetic
coefficients such as the conductivity will strongly depend on electron filling, as the
MIT is approached. These expectations should be confirmed by explicitly calculating
the critical behaviour of the conductivity at different values of the density.
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Figure 1. DOS statistics in the low-filling (high-doping) regime. The full distributions P (ln ρ)
are presented for increasing amounts of disorder. We find that the maximum, i.e. 〈ln ρ〉 shifts,
as the transition is approached. Note also the extremely large width of the distribution, so that
ρ now spans many orders of magnitude.
Figure 2. DOS statistics in the high-filling (low-doping) regime. We show the probability distri-
bution for ln ρ, as a function of disorder. We clearly see that while the distribution broadens,
〈ln q〉 ≈ const.

Finally, we mention an important feature of the insulating state in presence of both
the strong electronic correlation and disorder. By explicit calculations of both the
average and the typical density of states, we have demonstrated that the introduction
of disorder fills the Mott gap with localized electronic states. The average DOS is
therefore finite in the insulator. Nevertheless, the MIT still retains a definite Mott
character, with a finite fraction of electrons turning into localized magnetic moments,
and the typical quasi-particle weight Ztyp vanishing at the transition. Our results
explicitly show that the metal–insulator transition in presence of both interactions
and disorder is a qualitatively new type of transition, having well-defined signatures
of both the Anderson and the Mott route to localization.

8. Conclusions

The metal to insulator transition continues to be one of the central problem in
condensed matter physics. Building on the fundamental concepts introduced by Mott
and Anderson, there have been several attempts at the construction of a microscopic
theory. We have summarized in this contribution some aspects of the dynamical
mean field approach to this problem.

Deeply rooted in local physics, it combines the chemical and physical aspects of the
problem. We regard the construction of a mean-field theory as an essential first step
before a more complete treatment including Gaussian and nonlinear fluctuations is
carried out. In the clan limit the DMF description of the Mott transition has already
given insights into puzzling aspects of transition metal oxide physics.

Since the approach emphasizes the local environment, it has a conceptually very
simple extension to the disorder case: the statistical dynamical mean-field theory. The
theory explicitly incorporates both the Mott and the Anderson route to localization,
and thus provides a consistent description of the transition, interpolating between
the respective limits of no disorder and no interaction. This key feature seems to
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be missing in a recent field theoretical formulation of the Anderson–Mott transition
(Kirkpatrick & Belitz 1994, 1995).

The statistical mean-field theory reproduces many remarkable features of doped
semiconductors. A transition to a Griffiths phase (Bhatt & Fisher 1992; Dobrosavl-
jević et al. 1992; Lakner et al. 1994) where local moments coexist with conduction
electrons down to arbitrary low temperature precedes the true metal to insulator
transition. The local properties such as the density of states depend in a distinct
fashion on the level of doping (compensation). The metal to insulator transition in
the low-doping region (uncompensated) has a larger typical density of states and is
closer to a Mott transition than the corresponding transition at larger doping levels
(compensated situation). The latter contains ingredients from both the Anderson
and the Mott transition.

There are several issues that deserve further investigation. A detailed study of
the transport properties has to be carried out. One should also elucidate the inter-
play of the short wavelength fluctuations with long wavelength modes. The latter
are presumably described by the nonlinear sigma model approaches that have been
investigated near two and six dimensions. A second element still missing form the
mean-field theory is the inclusion of short range magnetic correlations. In our view
these are the most pressing problems that need to be address on the road to a
comprehensive theory of the Mott–Anderson transition.
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Discussion
L. J. Dunne (School of Applied Science, South Bank University, London, UK). I am
concerned that the t and U parameters used in Dr Kotliar’s Hubbard model may
not describe the physics of the problem correctly.

As the carrier density is increased, t and U will be modified by screening effects.
In order to do this problem more accurately the degrees of freedom associated with
the plasmon modes should be removed, leaving only the screened Hamiltonian, as
in the method of Bohm & Pines (1953). The screened short-range Hamiltonian will
contain a t and U which ought to depend on carrier concentration and this will have
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implications for the density at which a metal–insulator transition occurs and the
density of state profile.

G. Kotliar. At this point, the studies that we have carried out, assume some model
parameters (hopping integrals and U) and study model Hamiltonians as a function
of carrier density or temperature.

What you propose is certainly more realistic. Model parameters, in principle
depend on carrier concentration because the screening of the Coulomb interactions
is doping dependent. Also, it would be nice to carry out first-principle calculations
where no empirical parameters are needed.

Dynamical mean fieldstudies of this kind are beginning to be carried out. In
particular, in collaboration with the group of V. Anisimov, we have studied the
Li1−xSrxTiO3 system, at finite doping in a completely ab initio dynamical mean
field framework. These calculations are computationally very expensive, but I am
optimistic that further progress in the algorithms used to solve dynamical mean field
equations will speed up the calculations and will make them more accessible to the
materials science community.

A. Möbius (Institute for Solid State and Materials Research, Dresden, Germany).
A comment on Dr Kotliar’s comparison of n- and p-type Si concerning the critical
exponent: there is a large uncertainty in the experimental data which Dr Kotliar
uses. To explain this, I would like to start by referring to Mott. In his famous work
in 1972, he did not only state the existence of a minimum metallic conductivity, but
he pointed also to the characteristic energy for hopping, tending continuously to 0 as
the transition is approached. Independently from the minimum metallic conductivity
question, the latter point implies that there is always an activated region close to
the transition where the characteristic hopping energy is smaller than the lowest
experimentally accessible temperature. In this region, one cannot observe exponential
behaviour though the samples are non-metallic.

Almost all experimental papers, in addition to those cited in this paper, analyse the
data based only on a theory for the metallic region, presuming mostly σ = a+ bT 1/2

according to Altshuler and Aronov. However, they do not check whether or not these
data could also be understood in terms of activated behaviour. For the recent work
on Si:P by Stapp et al., Ted Castner’s comment demonstrates this problem very
clearly.

A more cautious analysis could be based on the consideration of the logarithmic
derivative, ω(t) = d lnσ/d lnT . For metallic samples it vanishes as T → 0, whereas it
diverges (or stays at least finite) for activated samples. If this criterium is used, there
are large problems with Dr Kotliar’s data: these are samples close to the transition
characterized by the respective authors as metallic, which should be activated accord-
ing to the differential analysis. In consequence, the values of critical concentration
and characteristic exponent have to be considered as uncertain.

More strictly, to the best of my knowledge, there is not a single study of homoge-
neous substances in the literature which can be considered in terms of a differential
analysis as a clean disprove of the minimum metallic conductivity hypothesis. Thus
it might quite well be that the exponent problem which Dr Kotliar dealt with could
only be a problem of a mathematical fit parameter without physical sense.

G. Kotliar. The main point of my talk was that even far away from the immediate
vicinity of the metal–insulator transition point, uncompensated doped semiconduc-
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tors behave very differently from amorphous alloys or strongly compensated doped
semiconductors.

I focused on the behaviour far from the critical point, when the conductivity is larg-
er than the value of Mott’s minimum metallic conductivity. In this case, the extrap-
olations needed to obtain the conductivity at zero temperature are quite certain and
reveal a very different behaviour in the two cases (linear in one case, sublinear with
an exponent close to 0.5 in the other).

I am well aware of the controversy about what is going on very close to the
transition. It could be that all systems behave the same, as argued forcefully by
H. von Löhneysen. It could be that the difference between the amorphous alloys and
the uncompensated doped semiconductors persist all the way to the critical point,
as argued by Rosenbaum et al. It could be that there is a real discontinuity at zero
temperature as you stated in your papers. These are important and difficult issues
for the experimentalists to resolve, but they were not the subject of my talk.

I wanted to draw your attention to the sort of ‘mean field critical behaviour’ that
we have, which is different for the amorphous alloys and the uncompensated doped
semiconductors. The data are crying for some mean field theory to describe it in
the same spirit that the Van der Waals theory describes the liquid–gas transition
not too close to the critical point and the BCS theory describes the superconduct-
ing transition in systems with long coherence length. The mean field theory should
explain why, in the region not too close to the transition, amorphous alloys and
uncompensated semiconductors behave differently.

The mean field theory that V. Dobrosavljević and I developed, which I have
described, is beginning to give some insight into this fascinating problem. On the
other hand, as with all mean field theories, it does not really have the right to work
quantitatively very close to the critical point and predict the ‘true critical behaviour’
at the transition. This is a much more difficult problem both theoretically and exper-
imentally.

Additional references
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